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Tungsten disulfide (WS2) is a type of anisotropic-layered compound and has broadband saturable absorption fea-
tures as saturable absorbers (SAs). With WS2-based SAs, dark solitons in erbium-doped fiber (EDF) lasers are first
obtained. For the generated dark solitons, the center wavelength is measured to be 1530 nm, and the repetition rate
is about 116.5 MHz. A series of optical spectra is exhibited. The electrical signal-to-noise ratio is better than 94 dB.
Results in this paper demonstrate that WS2-based SAs are the promising SAs for generating dark solitons in EDF
lasers. © 2016 Chinese Laser Press

OCIS codes: (060.5530) Pulse propagation and temporal solitons; (140.3510) Lasers, fiber; (140.4050) Mode-
locked lasers.
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1. INTRODUCTION
Ultrafast fiber lasers can be used in material processing and
optical communications [1–4]. They can be divided into two
types: actively mode-locked fiber lasers and passively mode-
locked fiber lasers. Compared with actively mode-locked fiber
lasers, passively ones have the advantages of compactness,
simplicity, and flexibility [5]. Due to the fast amplitude modu-
lation, two techniques, i.e., semiconductor saturable absorber
mirror (SESAM) and nonlinear polarization rotation (NPR),
have been extensively studied [6,7]. However, the SESAM
technique requires complicated manufacturing technology
and packaging process and has narrow operation bandwidth
[6]. The NPR technique suffers from bulky construction and
environmental sensitivity [7]. To seek for new and high-
performance saturable absorbers (SAs), 2D nano-materials
as saturable absorption materials have been used to fabricate
SAs for passively mode-locked fiber lasers [8–10].

Among those SAs, carbon-based SAs, such as carbon nano-
tubes (CNTs) and graphene, which have the advantages of ul-
trafast recovery time, easy fabrication, and low cost, have
been investigated to generate ultrashort pulses [11–14].
However, CNTs SAs are wavelength dependent on their diam-
eters, and can lead to strong nonsaturable losses [11,13]. For
graphene, the absorption is weak, which would decrease the
SAs’modulation ability [15]. Thus, new SAs based on other 2D
nano-materials have been developed [16–28]. The new 2D
nano-materials for the SAs mainly include topological insula-
tors (TIs) [16–19], transition mental dichalcogenides (TMDs)
[20–26], and black phosphorus [27,28]. For TIs, the optical
absorbance decreased when the incident laser intensity in-
creased, and TI SAs were saturated above a certain threshold
[29,30]. The tungsten disulfide (WS2)-based SA can overcome
those disadvantages. Therefore, the WS2-based SA has been
investigated as a new substitution for other SAs, and the fiber
lasers with WS2-based SAs have been constructed [31–35].

On the other hand, compared with bright solitons, dark
ones are less sensitive to fiber loss and more stable in the pres-
ence of noise [36–38]. Therefore, dark solitons have been
experimentally generated in fiber lasers at various center
wavelengths and have been recently investigated [39–54].
However, so far dark solitons in EDF lasers with WS2-based
SAs have not been reported.

Here, the first generation of dark solitons in EDF lasers
with WS2-based SAs will be studied. Combining WS2-based
SAs and the NPR technique, dark solitons in the EDF lasers
will be observed. A series of optical spectra of them will be
first presented. In addition, the signal-to-noise ratio (SNR) will
be measured.

2. SETUP OF PASSIVELY MODE-LOCKED
EDF LASERS WITH WS2-BASED SAS
The setup of our fiber laser is presented in Fig. 1. The length of
erbium-doped fiber (EDF) (Liekki 110-4/125) is 260 mm.

Fig. 1. Schematic of the mode-locked EDF laser. SMF, single mode
fiber; COL, collimator; QWP, quarter-wave plate; ISO, polarization-de-
pendent isolator.
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Introduction of the working principle for Fig. 1 can be found in
[47]. The WS2-based SA, which is inserted between the EDF
and wavelength-division multiplexer (WDM), is the same as

used and described in [5]. The total cavity length is about
1.9 m. In the process of testing related parameters, we have
added the half-wave plate (HWP) and polarization beam split-
ter (PBS) to make the output pulse into two parts: photodetec-
tor (PD)1 for monitoring, and PD2 for parameter
measurement. By rotating the HWP between two PBS, we
can adjust the incident power into PD1 and PD2, respectively.

3. EXPERIMENTAL RESULTS AND
DISCUSSION
By rotating HWPs and QWPs in Fig. 1, we can obtain the differ-
ent optical spectra of dark solitons as shown in Fig. 2. The
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Fig. 2. Different optical spectra of dark solitons are obtained with
the different polarization states when we rotate HWPs and QWPs
in the fiber laser. (a) The optical spectrum is smooth with the
4.8 nm spectral width at 1530 nm. (b) The optical spectrum is a bit
rough with the 4.1 nm spectral width. (c) and (d) both have the
0.16 nm spectral width.

Fig. 3. Due to the different intracavity power, the different pulse
sequences corresponding to Fig. 2 are presented. The oscilloscope
trace of dark solitons is in the time scales of 10 ns/div.
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fiber laser is mode-locking through WS2-based SAs and NPR
technique, and the mode-locking threshold is about ∼60 mW.
Compared with NPR fiber lasers, the mode-locking threshold
is low due to WS2-based SAs. The center wavelength of the
optical spectrum is 1530 nm. If we maintain the pump power
above the threshold of mode-locking and only adjust HWPs
and QWPs, the different optical spectra of dark solitons can
be obtained. Generally, when optical pulses propagate through
HWPs and QWPs, their polarization states could have a change
relying on the retardation between the slow and fast axes, and
the intracavity power of fiber lasers could be adjusted.

For Fig. 2(a), the 3 dB spectral width is 4.8 nm, which has a
large intracavity power in fiber lasers. The optical spectrum is
relatively smooth. Rotating HWPs and QWPs to decrease the
intracavity power, the relatively narrow optical spectrum is
presented in Fig. 2(b), and the optical spectrum is a bit rough
with the 4.1 nm spectral width. Because the intracavity power
is high, high-order solitons are formed. Figures 2(a) and 2(b)
show their optical spectra. If we decrease the intracavity
power, the optical spectra of fundamental solitons appear
as in Figs. 2(c) and 2(d). We present the corresponding pulse
sequences on the time scales of 10 ns/div in Fig. 3. We can see
the splitting of high-order solitons in Figs. 3(a) and 3(b) due to
the high intracavity power.

Dark solitons emit from the intracavity PBS with the rep-
etition rate of 116.5 MHz in Fig. 4(a), which is measured by
a radio frequency analyzer (ROHDE & SCHWARZ FSW26).
With 10 kHz resolution bandwidth (RBW), the SNR is better
than 94 dB, which demonstrates that the mode-locking state is
quite stable. The reason for the stability is that WS2-based SAs
can acted as the nonlinear filter for the pulse amplitude and
avoid excessive intracavity nonlinear. Integrated from 1 MHz

down to 10 Hz, the timing jitter is about 1 ps. Compared
with [47] (the SNR is about 63 dB, and the timing jitter is about
10 ps), this WS2 fiber laser has better performance than the TI
fiber laser. During this measurement, our fiber laser is no en-
capsulation. The lock circuit is also not used. That is to say,
incorporating the WS2-based SA in fiber lasers can enhance
the environmental stability.

4. CONCLUSION
In conclusion, we have demonstrated dark solitons with
WS2-based SAs in the fiber laser and carried out the hybrid
mode locking. The repetition rate of dark solitons has been
116.5 MHz at 1530 nm. Besides, due to WS2-based SAs, the
mode-locking threshold has been about 60 mW, which is rel-
atively low compared with NPR fiber lasers. With the same
pump power, the different optical spectra of dark solitons
have been obtained by properly rotating HWPs and QWPs.
The corresponding pulse sequences have been listed. The tim-
ing jitter and SNR have been measured to be 1 ps and 94 dB,
respectively. Results indicate that the optical spectra of dark
solitons can be diverse, and the mode-locked EDF laser can
easily generate stable dark solitons with WS2-based SAs.
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